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A large number of different methods for numerically inverting the Laplace transform 
are tested and evaluated according to the criteria of applicability to actual inversion 
problems, applicability to various types of functions, numerical accuracy, computational 
efficiency, and ease of programming and implementation. The methods are presented 
briefly and classified theoretically into methods which compute a sample, methods which 
expand f(t) in exponential functions, methods based on Gaussian quadrature, methods 
based on a bilinear transformation, and methods based on Fourier series. Extensive re- 
sults are presented, especially on the numerical accuracy of the methods on a set of 16 
test functions. The main conclusion is that for attaining high accuracy on a wide range of 
test functions, the use of Laguerre polynomials is most successful, while methods based 
on Chebyshev polynomials and on accelerated convergence of a Fourier series are both 
quite good. However, no single method gives optimum results for all purposes and all 
occasions; the results obtained in this comparison give some idea of which methods are 
likely to be suitable for special problems and circumstances. 

1. INTRODUCTION 

There are many problems whose solution may be found in terms of a Laplace 
transform which is then, however, too complicated for inversion using the techniques 
of complex analysis. Numerous methods have been devised for the numerical eval- 
uation of the Laplace inversion integral. For a detailed bibliography, the reader 
should consult Piessens (1975) and Piessens and Dang (1976); in the following we 
shall only refer to papers which are of direct concern. 

The purpose of this paper is to provide an evaluation of a representative sample 
of the existing methods, to enable a rational choice of a method to be made by users. 
Details of the criteria used, and the methods tested, are given in Sections 2 and 3, 
respectively. Our intention, in both regards, is to be as comprehensive as possible. 
However, we feel that an attempt to be encyclopedic will defeat the purpose of the 
paper because of the overwhelming amount of information which would result. In 
particular, in selecting the methods to be tested, we have tried to compare represen- 
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tatives of every known line of attack. Where a method performs well, we then test one 
or more variants; but in other cases we have exercised discretion in the interest of 
economy. 

There appear to be no comprehensive comparisons of numerical methods for 
Laplace transform inversion in the literature. Most papers discussing a particular 
method compare only a few functions and test two or three methods. The only 
previous paper presenting any systematic comparisons is Cost (1964), but the methods 
tested there perform poorly except on special types of functions. 

Before launching into the main part of the paper, we define some terminology which 
will remain standard. The Laplace transform under consideration is denoted by F(p), 
and is related to the (unknown) original functionf(t) by 

F(p) = lmj(t) e-+ dt. (1.1) 
0 

The inequality 

R&4 > co (1.2) 

specifies the region of the complex p-plane in which F(p) is analytic, and we assume 
that F(p) has some form of singularity on the line Re( p) = co . The inversion integral 
expresses f(t) as 

f(t) = (27ri)-l [yl F(p) ept dp, (1.3) 

where c > co . 
In many cases, f(t) is a real function, and then the real and imaginary parts of F( p) 

may be simply expressed as 

Re[F(c + iw)] = lrn e-““f(t) cos(wt) dt, 
0 

(1.4) 

Im[F(c + io)] = - sbg e-““f(t) sin(wt) dt. (1.5) 

The inversion theorems for Fourier cosine and sine transforms give, as an alternative 
to (1.3), the pair of relations 

f(t) = 2bect Jam Re[F(c + iw)] cos(wt) dt, (1.6) 

f(t) = -2+ect jrn Im[F(c + iw)] sin(&) dt. 
0 

(1.7) 

In all these relations, c > c, . 
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2. CRITERIA USED FOR COMPARISON 

In this section we discuss the criteria which we have chosen to use in evaluating 
a number of different numerical inversion techniques. In our view, the most important 
criteria are: applicability to a variety of common types of inversion problems, 
numerical accuracy which may be achieved on a digital computer, relative computation 
times, programming and implementation difficulties. Actually these criteria are not 
fully independent, but for convenience we discuss them separately. 

2.1. Applicability to Actual Inversion Problems 

In practice there are many problems for which numerically inverting the Laplace 
transform either requires a special type of method, or can be greatly facilitated by 
using a special type of method. In other words, for such problems an all-purpose 
method may be inappropriate. Examples include problems with numerical data at 
arbitrary points, problems with transforms in the form of rational fractions, problems 
with noisy data (a case we hope to treat in a later paper), or problems for which the 
solution is known to be of particular form. Such types of problems often can best 
be approached by a special method, if such a method is available. 

Here we are concerned only with two general cases: a general F(p) about which 
little is’known, and for which an all-purpose method is initially most convenient to 
apply; and an F(p) for which the form of the solution f(t) is roughly known. These 
two cases are the basis for the two sets of results presented here. First, we present 
results for each numerical method for that set of parameters which gives the most 
accurate numerical approximation to the analytical solution. So if one knows the 
rough form of the solution f(t) which is sought, it is appropriate to use that numerical 
method, and the associated parameter set, which gives the most accurate numerical 
approximation for a tested F(p) which gives an f(t) of similar form to the unknown 
solution. Second, we present results for each method for that set of parameters which 
is most successful over the whole range of functions tested. These results tell one what 
method to use, and what associated parameters to use, if one wants a general purpose 
inversion method. (There is still no single best method because of the differing success 
of the methods according to the other criteria below.) 

Although the results here might give one confidence that a particular methcd will 
be highly successful, for a certain problem it is usually worth using more than one 
method (as recommended by Bellman et al. (1966), and others) on any unknown func- 
tion as a check against peculiar behavior of the function or of the numerical method, 
and against programming and implementation errors. 

In the troublesome case that different methods produce different results, the proper 
course of action will have to be determined on the basis of the features of the problem 
at hand. One approach would be to try the methods on a function whose analytical 
Laplace transform is known and which is similar in form to the troublesome function: 
the more successful method on the known function should then be a better bet on 
the unknown one. 
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2.2. Applicability to Various Types of Functions 

We give results for each method on each of the test functions listed in Table I. 
These particular functions were selected to cover a wide range of functional forms, 
to cover well known and understandable functional behaviors, and because they have 
simple analytic solutions. (Without an analytic solution, there would be no safe 
way to compare the different numerical solutions.) Obviously many other functions 
could be used as well. We believe that the ones used here are adequate to compare 
the different numerical methods (already there is considerable regularity in the success 
of the various methods on certain types of functions). For special functions, it would 
be straightforward for the user to compare results from promising numerical methods 
on further suitable test functions. 

There are three basic types of functions in the set of 16: functions which are con- 
tinuous and for which F(p) + p* as p + co (functions 1-9, 13, 14, 16); functions 
which are continuous and for which there is no value 01 for which F(p) -+ p” as 
p + co (functions 11, 15); and functions which have discontinuities (functions 10, 12). 

2.3. Numerical Accuracy 

For each function and each method we present two measures for the accuracy of 
the numerical solution. Let f(t) be the analytical solution andf,(t) be the numerical 
solution. The two measures are 

L = z (f(i/2) -fa(i/2))2/30 1’2, 
c i=l 1 

L, = 
t 

f (f(i/2) -fa(i/2))2 ehi12 
i=l 

/( ,$ e-“f2))li2. 

(2.1) 

(2.2) 

Thus L gives the root-mean-square deviation between the analytical and numerical 
solutions for the t values 0.5, 1, 1.5,.., 15, while L, is a similar measure weighted by 
the factor e+. 

The reason for using these measures is that presentation of results for each t 
value would take up a large amount of space and make it difficult to quickly perceive 
the accuracy of the method. L gives a fair indication of the success of a method for 
large t, and L, for relatively small t, and between them a good idea of the likely 
precision of the numerical solution at any t value. It might be argued that smaller t 
values than 0.5 should be used. However, for most methods results are more accurate 
for small t-L, is smaller than L-so that results for small t are likely to be better 
than indicated by L, . Exceptions to this will be noted explicitly. 

All the calculations were done in double precision on a Univac I1 10 (there is no 
complex double precision arithmetic on this machine, so all complex calculations 
were done using real and imaginary parts), so that the precision of any given cal- 
culation is at most roughly lo- I’. The results for the measures L and L, should be 
seen in the light of this limitation. 
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TABLE I 

Functions Used in Method Comparisons 

F,(p) = (p’ + 1)-l/Z 
F*(p) = p-‘/+-P-l 

F&J) = (P + m- 
F*(P) = ((P + 0.2)” + I)-’ 

F&J) = P--l 
F&P) = P-’ 
F,(P) = (P + l)-* 
WP> = (pa + 11-l 
F,(p) = p-‘iz 

&(p) = p-k-6 

&(P) = P-’ In(p) 
F,,(P) = (~(1 + e--pN-1 
F,,(p) = (P” - l)W + l)F 
64(P) = (P + 1/2Y’* - (P + 1/4Y2 
F,,(p) z e-4~“* 

F,,(p) = arctan 

f&> = Jo@) 
f*(t) = (nt)-‘I* cos(2t’4 
fa(t) = e-t/* 
f*(t) = e-OsBt sin(t) 
fSf) = 1 
m = t 
h(t) = ted 
fa(t) = sin(t) 
h(f) = (Trt)-‘i* 

ho(t) = 00 - 5) 
fidt) = -Y - In(t) 
fia(t) = square wave 

fm = f cow 
fi4(t) = (e-‘/d - e-t/*)(4&)-W 

fib(t) = 2e-4/“(d8)-1/2 
fJt) = t-l sin(t) 

2.4. Computation Time Required 

The average time for the evaluation of the numerical value of a single function at 
30 t values is given later in Table VI. Because of differences in execution time due to 
different functions and especially to different parameters, and because of the particular 
implementation of the numerical algorithms in Fortran (although every attempt was 
made to optimize each algorithm), the computation times are probably accurate to 
no more than 25 %. 

2.5. Programming and Implementation 

Some of the numerical methods are simple to program and others fairly difficult 
or inconvenient. The exposition in Section 3 should give a feel for this. Ease of 
programming may be an important consideration if only a few functions are to be 
inverted; if a large number of numerical inversions are to be done, then it is worth 
using a difficult-to-program method if it is successful in other respects. Errors in 
programming can be detected by comparing results on test problems with results 
here or in the papers originally describing the method. 

Implementation here’ refers to applying an already programmed method to a 
particular problem. The greatest difficulty involved in implementation is in determining 
F(p). This is easy for real values of p, but for complex values may be very messy and 
a source of error. Therefore for each method it is noted (in Table VI) whether or not 
values of F( p) for complex p are required. 
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2.6. Selection of Methodsfor Testing 

Although we have tested a large number of numerical methods, it will be apparent 
that we have omitted quite a number of others. There are two reasons for this. First, 
a large number of numerical methods for inverting the Laplace transform are variants 
of other methods. When the original method is not reasonably successful we have 
not tested variants (for example, we have not tested Piessens’ (1969) variant of the 
rather poor method of Bellman et al. (1966).) On the other hand, when a given method 
shows great promise, we have attempted to test a number, though not necessarily 
all, of its variants. This is the reason for including methods due to Dubner and Abate 
(1968), Siverberg (1970), and Crump (1976). Second, we have been forced to limit our 
testing of different methods by our own limited resources. Hopefully the results 
here can provide a basis for the testing and comparison of other numerical methods 
for inverting the Laplace transform which have been omitted by us or which are as 
yet undeveloped. 

3. SURVEY OF NUMERICAL INVERSION PROCEDURES 

In this section we briefly survey some of the methods which have been proposed 
for the numerical inversion of Laplace transforms. Questions related to the merits 
of these methods are left until the next section, although the actual selection of 
methods made here reflects to some extent our assessment of these matters. The overall 
organization is under six main headings which are based on theoretical considerations. 

3.1. Methods Which Compute a Sample 

An approximate inversion algorithm for the Laplace transform can be obtained by 
computing a sample, namely, 

L(t) = Lrn W, 4fW du, 

where the functions 6,(t, u) form a delta convergent sequence (Gelfand and Shilov, 
1964, p. 34), which means that they have the property that Z,(t) tends to f(t) with 
increasing n. Using the functions @u/t)” exp(-nu/t)/(n - l)! gives the result 

f(t) M In(t) = (-l)n nn+'(n!)-l t4n+l)py@), (3.1) 

where Ftn)( p) is the nth derivative of IT;( p) with respect top. This formula was obtained 
by Widder (1934), though not in the context of numerically inverting the Laplace 
transform. An obvious disadvantage of this method is the need to differentiate F(p) 
repeatedly. 

A slightly different formula than (3.1), but which may be obtained in a similar 
manner (see Cost, 1964) was proposed by ter Haar (1951): 

f(t) w t-‘F(t-1). (3.2) 
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Another variant is due to Schapery (1962): 

f(t) w (2t)-lF((2t)-1). 

Gaver (1966) has proposed the use of the functions 

6,(t, 24) = (2n)!(n!(n - I)!)-’ a(1 - e-au)n esnau, 

7 

(3.3) 

where a = In 2/t, which leads to a result similar to (3.1) but involving the nth finite 
difference d”F(n In 2/t). The formula, as it stands, is not convenient, because the rate 
of convergence of Z,(t) to f(t) is rather slow. However, Gaver has shown that the 
quantity Z,(t) - f(t) may be expanded in an asymptotic expansion in inverse powers 
of n; consequently the result may be improved using extrapolation. The most useful 
extrapolation formula has been derived by Stehfest (1970, 1970a) to give the algo- 
rithm 

f(t) w In 2/t 2 K,F(n In 2/t), 

(3.4) m~nh.NIZ) 
K,, = (-l)n+J”P kN92k) ! 

h”[(;ll,21 (N/2 - k)! k!(k - I)!(n - k)!(2k - n)! ’ 

where N is even. 
The Gaver-Stehfest method (3.4) is a particular example of a general class of 

methods proposed by Zakian (1969). In our notation, Zakian chooses 

so that 

6,(t, u) = i Kit-l exp(-a&), 
i=l 

In(t) = i Kit-‘F(ui/t). (3.5) 
i=l 

Zakian has proposed two methods for choosing the coefficients Ki and ai . In the first 
(Zakian, 1970), he compares the Laplace transform of 6,(t, u), which is a rational 
function, with the Laplace transform of 6(u - t), which is an exponential function, 
and chooses the coefficients so that the rational functions are equal to the classical 
PadC approximations for the exponential function. It has been noted by Singhal and 
Vlach (1975) that this method is a special case of the Gaussian quadrature method, 
which we outline in Section 3.3. The other proposal involves a least-squares optimi- 
zation (Zakian and Gannon, 1971). 

3.2. Methods Which expand f (t) in Exponential Functions 

A number of methods depend on representing f(t) by exponential functions, 
usually by introducing exp(--rt) as a new independent variable. Bateman (1936), 
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ErdClyi (1943), Papoulis (1956), and Lanczos (1957) have proposed Legendre func- 
tions. Writing 

f(l) = 5 anP2&9 (3.6) 
VL=O 

taking the Laplace transformation of this formula, and substituting p = (2k + 1) r, 
k = 0, 1, 2 ,..., N leads to the relations 

rF[(2k + ‘1 r] = m;. 2(k + le (k-m+ l)ma,, 
l/2) (3.7) 

m+1 

where 

(A, = 1, n=O 

= j(j + 1) *** (j + n - l), n > 0. 

Equations (3.7) may be solved recursively for the coefficients a, (Papoulis, 1956); 
the Legendre polynomials are calculated from the relations 

HOW = 1, 
Al = x, (3.8) 

(n + I) P,+,(x) = (2n + 1) xP,(x) - nP,-d-G. 

The Jacobi polynomials I’$“( x ) f orm a very general set. Miller and Guy (1966) 
have used them to approximatef(2) as 

f(t) = f amPt.8)(2e-rt - l), 
WL=O 

(3.9 

where (Y is set to zero. On taking the Laplace transform and settingp = (fl + k + 1) r, 
they obtain 

rF[@ + k + ‘1 r] = m;. (k + /? + 
k (k - m + IL a,, 

1) m+1 

which may readily be solved for the coefficients a, . Together with the recursion 
relations 

Ppqx) = 1, 

Pp)(x) = x(1 + (a + /q/2) + (a - /3)/2, 

2(n + l)(n + a: + B + 1)(2n + 01 + 8) dY3x) 

= [(2n + ai + p + 1)(a2 - p2> + (2n + U + P)B Xl P?‘(x) 

- 2(n + 4(n + P)(2n + 01 + B + 2) kF34, 

this specifies the method. Berger (1968) has also proposed the use of Jacobi poly- 
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nomials, and as well has used ultraspherical polynomials (Berger, 1966; Berger and 
Duangudom, 1973). 

Bellman et al. (1966) have outlined a method which they derive from consideration 
of the Gauss-Legendre quadrature rule applied to the definition of F(p) (Eq. (111)). 
However, it may be regarded as a special case of the Legendre method, by setting 
k = 0 and ti = --r-l ln((1 + xi)/2), i = 1,2,..., N, where the xi are the zeros of 
I’&). The result is 

f(tJ = f wilerF(kr), (3.10) 
k=l 

where the coefficients wilt are defined by 

(3.11) 

An important disadvantage of this method is that it gives the values of f(t) only 
at a restricted set of nonequidistant points. Tables of the coefficients wtk: may be 
found in Bellman et al. (1966). An extension of Bellman et al.‘s method has been 
presented by Piessens (1969). 

Another group of methods depend on transformations of the type cos 0 = exp(-rt), 
followed by an expansion in trigonometric functions. Papoulis (1956) writes 

f(t) = f uI, sin((2k + 1) 0), 
k=U 

cos 19 = e-rt. 
(3.12) 

Taking the Laplace transform withp = (2k + 1) r, k = 0, l,..., N, gives the equations 

rF[(2k + 1) r] = 7~2-~(~+l) jo[(,‘_“,,-(,-‘,“_,)]u-- c3’13) 

A number of other similar schemes have been proposed, using either a Fourier 
series (Doetsch, 1971; Lanczos, 1957) or an expansion in Chebyshev polynomials 
(Lanczos, 1957). 

For certain problems, Schapery (1962; see Cost (1964) and Rizzo and Shippy 
(1970)) has proposed the expansion 

f(t) = A + Bt + 5 ake-bkt , (3.14) 
li=l 

where the exponent weights b, are chosen to suit the expected form of the function 
f(t). Laplace transformation yields 

pF(f-‘) = A + &-I + : ak(l + b,p-‘)-l, 
k=l 

(3.15) 
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and these equations are solved for a, by substituting p = b, , k = l,..., N, and also 
using the identities 

B = $sI,P~F(P), 

A = - f ak. 
I;=1 

(3.16) 

3.3. Gaussian Numerical Quadrature of the Inversion Integral 

Gaussian quadrature is a well-known method for the approximation of integrals, 
based on ensuring that the rules are exact for polynomials. Such a rule has been 
developed for the inversion integral, designed to invert exactly Laplace transforms 
of the form p-“@(p-l), where @(p-l) is a polynomial in p-l (Salzer, 1955, 1958, 
1961; Shirtliffe and Stephenson, 1960; Piessens, 1969a, 1971). To state the rule in 
invariant form, it is necessary to write the inversion integral (1.3) as 

f(t) = (2rrit)-l ~P~~~ F(z/t) e* dz, (3.17) 

where c’ = c/t. The approximation consists of writing 

f(t) = f K,t-‘F(a,/t), 
i=l 

(3.18) 

and choosing the coefficients to make the rule exact whenever p”+l;(p) is a poly- 
nomial in p-l of degree <2N - 1. Thus, if ps+T( p) has a Taylor expansion in powers 
of p-l, the method recovers a Taylor series expansion for f(t). A survey of tables of 
the weights Ki and nodes a, has been given by Piessens (1971), and a computer program 
for calculating the weights and nodes has been presented by Piessens (1973). 

For s = 0, a more general method has been given by Singhal and Vlach (1975). They 
approximate the inversion integral (3.17) by replacing the exponential function by 
its PadC approximant 

f(M+N+l-k)!(f)zl 

fM.N(Z) = N k=l 
k;l(M+N+ 1 -W(;)(-;’ 

(3.19) 

with M < N, and closing the inversion contour in the right-hand half plane using 
residue theory. Since the first M + N + 1 terms of the Taylor series for fM,.,, are 
identical with those for ez, it is readily shown that this method is exact for I;(p) = p-*, 
k = 1,2 ,..., M + N + 1. Thus, on setting M = N - 1, we recover the Gaussian 
method for s = 0. 

An advantage of this more general method arises out of the fact that for 
M < N - 1, the numerical inversion of pk, k = 0, l,..., N - M - 2, is identically 
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zero. Thus, on choosing M < N - k - 1, we have the following approximation 
to the kth derivative: 

f’“‘(t) = f &-‘(ai/t)” F(aJt). (3.20) 
i=l 

This holds because the Laplace transform of f’“)(t) differs from pY(p) only via a 
polynomial of degree k - 1 in p, and these terms make no contribution to the result 
whenMGN--k- 1. 

Schmittroth (1960) has proposed a method which uses a Gaussian rule derived by 
Hurwitz and Zweifel (1956) for trigonometric integrals of the type occurring in the 
inversion formulas of (1.6) and (1.7). Using (1.7), and writing 4(w) = --Im[F(c + iw)], 
the essential numerical formulas are 

f(t) = 2ectr1 f I&), 
n=O 

(3.21) 

In(t) = (--I)” Jy;; $[wl(oJ + n + 0.5)] cos 7rw dw, 
(3.22) 

M (- 1)” $ AjN(COS ?Te,~)-l(#rt-l(-s,N + n + OS)] 
j=l 

+ ~WVjN + n + 0.5)1), 

where the coefficients O,N and AjN are the nodes and weights for an N-point Gaussian 
approximation to the integral In(t), and are given in Hurwitz and Zweifel (1956). 
Since the Gaussian rule depends on approximating the function #nt-l(w + n + 0.5)] 
for -0.5 < w =C 0.5, it becomes increasingly accurate for tied N as t increases. 
Thus the method operates in general for t > fmin , in contrast with other methods, 
which operate for t < t,, . The sequence of partial sums for the alternating series 
(3.21) converges rather slowly, and Schmittroth applies the averaging procedure 

s,” = (Sk-’ + s;;9/2, k = 1, 2,..., 
(3.23) 

S,Q = f z, . 
n=O 

to speed the convergence. The series (3.21) is summed until a relative accuracy E 
is achieved or a limit nmax of terms is reached. 

3.4. Methods Which Use a Bilinear Transformation of p 

The methods of Section 3.2 consist essentially of choosing an expansion for f(t), 
and determining the parameters by a process of collocation of the Laplace transform 
of the expansion with F(p) at a finite set of points in the p-plane. An alternative 
approach is to approximate F(p) directly. However, for this purpose, neither poly- 
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nomials in p nor in e- rg are appropriate. In fact, it is more appropriate to use an 
expansion in inverse powers of p, and this is most readily done by introducing a new 
variable z as z = (p + a)/(~ + c), c > a, which maps p = 00 to i = 1, 
p = -(a + c)/2 to z = -1, and the half plane Re(p) > -(a + c)/2 to the interior 
of the unit circle 1 z / < 1. 

An important class of applications arises by expanding the original function f(t) 
in a series of generalized Laguerre functions. Suggestions along this line go back 
to Tricomi (1935) and Widder (1935): see Piessens (1975). Let 

(3.24) 

where IX, c, and Tare parameters. The Laguerre polynomials may be calculated from 
the recursion relations 

L,“(t) = 1, 

L,“(t) = 1 + 01 - t, (3.25) 

nL,“(t) = (2n + 01 - 1 - t) LiJt) - (n - 1 + CX) L”,-,(t), 

and the coefficients ak as follows. First note that the Laplace transform of (3.24) is 

F(;(p> = $ ak(p + c - I)“(p + $(k+or+l), 

which the bilinear transformation z = (p + c - l)/( p + c) turns into 

@(.4 = (P + c)Lltl F(P) 

m f akzk. 
k=O 

The coefficients ak may be determined by setting z = eis and using standard formulas 
for trigonometric interpolation. Weeks (1966) set a = 0, c = co + 1/2T; Piessens 
and Branders (1971) assume that I;(p) has the asymptotic form P--~-I for large p 
from which 01 is determined. In either case, the appropriate formulas for the coeffi- 
cients ak are 

N 

a0 = (N + I>-’ c Wj), 
j=O 

N 

ak = 2(N + 1)-l c h(6,) cos(kej), 
j=o 

h(B) = Re[((l + cot(8/2))/(2T))*‘1F(1/(2T) + c + i 00t(e/2)/22-)1. 

(3.26) 
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Laguerre polynomials have the advantage that their Laplace transforms are directly 
connected with a bilinear transformation. However, there are other possible expan- 
sions which may be applied to the function Q(z). Piessens (1972) has prooposed Jacobi 
polynomials, but in practice restricts his attention to the special case of Chebyshev 
polynomials. Thus the basic approximation is 

F(p) M p-“-l g a,?+,(1 - bp-1). 
n=O 

Inverting the series term by term, we find that the corresponding approximation to 
f(t) is 

f(t) M P(a!)-1 i a,$,(bt/2), (3.27) 
9Z=O 

where &(x) is a polynomial of degree k. The first three of these polynomials are readily 
found as 

$0(x) = 19 
c+*(x) = 1 - 2x(a + 1)-l, (3.28) 

cj2(x) = 1 - 8x@ + 1)-l + 8x2@ + 1)-l@ + 2)-l. 

For n > 2, the recurrence relations for &(x) are 

-4nw = (A + w Ll(4 + (C + w L2W + E&Km, 
A = 2n + (n - 1)(2n - 3)(01 + n - l)(n - 2)-l(o1 + n)-l, 

B = 4(n + a)-*, 
(3.29) 

C=l+A+E, 

D = 4(n - l)(n - 2)-I(01 + n)-1, 

E = (n - l)(ar - IZ + l)(n - 2)-‘(a + n)-‘. 

The coefficients a, in the expansion may be expressed as finite sums using standard 
techniques. The result is 

a, = (N + 1)-l 2 @ (cos (($$) +)), 
n=0 

ak = 2(N + 1)-l 5 @ (COS ((e) $)) COS ((+-$-) %), (3.30) 
?I=0 

@(u) = (b/(1 - U))“+V(z7/(1 - U)). 
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3.5. Representation by Fourier Series 

If the trapezoidal rule is applied to either of (1.6) and (1.7), then the resulting 
numerical expressions are Fourier series. Dubner and Abate (1968) have started 
with (1.6) to write 

f(t) m 2ectT-l f ’ Re[F(c + i&/T)] cos(vkt/T), 
k=O 

(3.31) 

where T is a parameter and the prime on the summation means that the k = 0 
term has weight one-half. Dubner and Abate derived this formula by considering 
the expansion of f(t), 0 < t < T, as a Fourier cosine series, and showed that the 
error could be made small for 0 < t < T/2 by choosing CT sufficiently large. 

There is no theoretical reason for using the real part of F( p) as in (3.31); Silverberg 
(1970) and Durbin (1974) have proposed that the trapezoidal rule be applied to (2.3) 
directly, which is equivalent to averaging (1.6) and (1.7). The resulting approximation 
is 

f(t) M &T-l ii (Re[F(c + ink/T)] cos(?rkt/T) 

- Im[F(c + irk/T)] sin(nkt/T)). (3.32) 

In both cases, it may be shown that the error is essentially bounded by exp[(c, - c) T], 
becoming worse as t approaches T/2 for (3.31) and T for (3.32). However, for large 
CT, this becomes small much more rapidly than the usual T-2 law for the trapezoidal 
rule, and this is connected with the fact that both methods are Fourier representations 
of a function closely related to f(t). 

Both of the above methods involve an infinite sum, and this is approximated, 
in the original papers, by truncating after N terms. In the interest of efficiency, a 
number of alternative proposals have been made. One of them is the use of fast 
Fourier transform techniques (Cooley and Tukey 1965; Cooley et ul., 1970); however, 
this is a computational variant rather than one which is theoretically different. 
Crump (1976) has proposed the use of convergence speeding techniques, choosing 
the epsilon algorithm (MacDonald, 1964). The algorithm is essentially 

(m) 
Es+1 

= E(.p) + @+1) _ Ey))-l, (3.33) 

where &“’ = 0, and EI;“’ is the mth partial sum of either (3.31) or (3.32). 

3.6. Pad& Approximation 

A considerable number of papers have been published on the use of Padt approxi- 
mation to the Laplace transform, whereby F(p) is replaced by Pad6 approximants 
tn,,( p) in the inversion integral (see Longman, 1975, and references therein). Unfor- 
tunately, the con&uction of the rational functions c,,,(p) requires a knowledge 
of the Taylor expansion of F(p) about the origin, and this makes it impossible to 
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implement a procedure which uses only values of F(p). In addition, it has been 
reported (Longman, 1973) that such methods may perform erratically even on 
functions of the same form, but differing in some parameter value. 

4. RESULTS 

4.1. Methods Tested 

In Table IL are listed the numerical methods for which numerical results are reported 
for the test functions in Table I, along with the references from which the equations 
used in programming each method were obtained, and the numbers of the equations 
in this paper where the methods are specified. In the next few paragraphs we comment 
on some methods which were tested but for which results are not listed, and on some 
methods which were not tested. 

Method 1 is presented to indicate the accuracy obtainable using crude analytical 
approximations. The methods due to ter Haar (1951)-(3.2)-and Schapery (1962 

TABLE II 

Methods for Which Results Are Given 

Type of Method Method source of Equation 
method number name equations number 

Computes a sample 1 
2 

Expands f(t) in 3 
exponential functions 

4 
5 
6 

Gaussian quadrature 7 

8 
Bilinear transformation 9 

10 

Fourier series 
11 
12 

13 

14 

Widder 
Gaver-Stehfest 
Legendre 

polynomials 
Bellman et al. 
Trigonometric 
Schapery 
Gaussian 

quadrature 
Schmittroth 
Laguerre-Weeks 
Laguerre- 

Piessens- 
Branders 

Chebyshev 
Dubner-Abate 

Silverberg- 
Durbin 

Crump 

cost (1964) (3.1), ?Z=l 
Stehfest (1970, 197Oa) (3.4) 
Papoulis (1956) (3.6)-(3.8) 

Bellman ef al. (1966) (3.10)-(3.11) 
Papoulis (1956) (3.12)-(3.13) 
cost (1964) (3.14)-(3.16) 
Piessens (1971) (3.18) 

Schmittroth (1960) 
Weeks (1966) 
Piessens and 

Branders (1971) 

P&ens (1972) 
Dubner and 

Abate (1968) 
Silverberg (1970) 

Crump (1976) (3.32)-(3.33) 

(3.21)-(3.23) 
(3.24)-(3.26) 
(3.24)-(3.26) 

(3.27)-(3.29) 
(3.31) 

(3.32) 

581/33/1-z 
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-(3.3)-usually give somewhat worse results than method 1. On the other hand, 
using higher derivatives gives higher accuracy, but tests to 12 = 3 (and n = 8 on 
function 3) indicate that convergence is slow; in any case, calculation of higher 
derivatives analytically is out of the question for most practical problems. 

As noted previously, the method presented by Zakian (1970) is a special case of 
the Gaussian quadrature method (method 7); we have not tested the variant presented 
by Zakian and Gannon (1971), which does not seem to promise any dramatic im- 
provement. 

As well as Legendre polynomials (method 3) we also tested a very similar method 
based on using the shifted Legendre polynomials. The results were also fairly similar, 
being slightly better on some functions and slightly worse on others. This comparison 
gives us some confidence that most variants of methods (such as using different sets 
of orthogonal polynomials of the same general type) are unlikely to have a dramatic 
effect on the accuracy obtained. 

The use of Jacobi polynomials and of ultraspherical polynomials was not tested, 
because published results (Miller and Guy, 1966; Berger, 1966, 1968) do not indicate 
any great improvement over Legendre polynmials, which themselves give only 
mediocre results. 

Because method 4 of Bellman et al. (1966) gave such poor results, its extension 
given by Piessens (1969) was not tested. 

The Gaussian quadrature method of Salzer (1955, 1958, 1961) was not tested, since 
it is a special case of the more general approach of Piessens (1971): Salzer’s method 
will give the same results as Piessens’ method for s = 0, and worse results for s Z 0. 
Similarly, the more general Gaussian quadrature method of Singhal and Vlach 
(1975) is identical to Piessens’ method for the results obtained here: Singhal and 
Vlach’s formulation is advantageous when f(“)(t) is desired. 

Veillon (1974) provides an improvement to the method of Dubner and Abate 
(1968)-method 12- in the form of a program for automatically calculating the 
optimum value of the parameter c. This was not tested independently since the search 
for optimum parameter values was part of the procedure adopted here anyway. 
However, Veillon’s improvement would be worth considering if method 12 were 
found suitable for other reasons. 

The method of Padt approximation of F(p) was tested using the algorithm found 
in Longman (1971) but the conclusion was that no useful and comprehensive com- 
parison was possible with the present set of functions and methods. In the first place, 
seven of the test functions are in the form of rational functions, and PadC approxi- 
mation therefore gives exact analytical (and numerical) results. Of course, such 
exactness is not indicative of the promise of the Pad& method on functions which 
differ even slightly from rational fractions, whereas the accuracy of other methods 
on such rational fractions is usually a good indication of their accuracy on more 
complex problems of the same type. (Similar comments apply to several of the methods 
when applied to one or two of the functions, especially function 5.) Second, four of 
the test functions cannot be expanded in a suitable Taylor series for application of 
the Padt method. Of the remaining five test functions for which a Taylor series or 
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nonexact PadC approximation can be achieved, no satisfactory results could be 
obtained, apparently because of enormous roundoff error which occurred before 
convergence could be obtained. In any case, we have not included the PadC approach 
approach in the comparison here. Our conclusion is that it should be used on all 
problems which are exact rational fractions, but otherwise only after satisfactory 
results have been obtained (such as we have not obtained) on suitable test functions. 

4.2. Parameters 

An essential part of testing the methods is determining the optimum values of the 
variable parameters. For each method we followed this general procedure: 

(a) If papers describing the method specified an optimum value of a para- 
meter under certain conditions, we adopted that value if appropriate. For example, 
Crump (1976, p. 94) notes that T = 0.8t,, g ives fairly optimal results, so we have 
adopted T = 12 for method 14. 

(b) A reasonable spread of values for the remaining parameters were used in 
preliminary tests, constrained by suggestions in papers and computational effort 
required (that is, methods requiring large amounts of computation time were usually 
not tested with as great a number of different parameter values). 

(c) Assuming that best results on most of the test functions were obtained 
in a relatively small range of parameter values (which was usually the case), final 
tests were made covering these values more closely, again subject to limitations of 
computational time. The ranges used in these final tests are listed in Table III. 

The “optimum” parameter values for any given test function are taken to be the 
ones, of those tested under stage (c), that give the highest accuracy according to 
the measures L or L, . Slightly better results, obviously, usually could be obtained if 
a finer mesh of parameter values were tested. 

The “optimum” parameter values for the set of 16 test functions are determined in 
the following way: for each parameter, the “optimum” value is taken to be the median 
of the optimum parameter values for the 32 measures of best fit (16 individual test 
functions, a value of L and L, for each), excluding those measures for which the 
accuracy is very poor (defined arbitrarily as L or L, > 10-3) or always very good 
(for example, L or L, < lo-* for all parameter values). For example, if N = 60 
is the “optimum” number of terms in a Chebyshev approximation, then half of the 
cases in which L or L, is minimized will be for N > 60 and half for N < 60, excluding 
those cases for which results are poor anyway, or for which results are always excellent. 

Note that accuracy approaching the accuracy obtained with “optimum” parameter 
values in many cases may be achieved with other parameter values. In particular, 
if a much smaller number of terms than the “optimum” number still achieves com- 
parable or satisfactory accuracy, then the smaller number of terms often might be 
preferred in the interests of computational efficiency. For example, with N = 301 
method 14 gives L = 1.4 x lo-l1 for function 4, while with N = 101, L = 4.2 x lOA 
which is satisfactory for many purposes. 
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TABLE III 

Parameter Values Used for Each Numerical Method Tested 

Method Parameter Value(s) 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

II 

N 

‘N 

N 

L 

b/t 

N 

N 

N 
hllsx 

E 

c - c, 

N 
c - c-0 

N 
k max 
c - cg 

N 
b 

T 
N 
c - cg 

T 
N 
c - c-0 

T 
N 
c - cg 

1 

8, lo,..., 32 

0.1, 0.2 )...) 0.5 
10, 15, 20,25 

4,7, 10, 15 

0.1, 0.2 ,..., 0.5 
10, 15, 20,25 

0.01 x 2’“-l 
5, lo,..., 25 

2, 4, 6, 8 

20 
100 
10-e 
0.2, 0.4, 0.6, 0.8 

20, 40,..., 300 
8115, lO/lS, 12/15 

20, 40,..., 300 
N 
1;‘4, 1,‘2, 1 

10, 20,... until N > 60 and L and L, begin increasing 
0.075, 0.125, 0.2 

30 
200, 400,..., 5000 
4/30, 8i30, 12130 

15 
200, 400,..., 5000 
2/15, 4/15, 6115 

12 
21, 41,..., 301 
l/2, 1, 312 

It should be remembered that the parameter ranges in Table III are only those 
surveyed under stage (c). In preliminary tests under stage (b), other parameter values 
were tried, but often not for the full set of functions. For example, for method 8, 
values of N = 10, 20, and 30 were tried initially, then values of N = 15, 20, and 25; 
since N = 20 so consistently gave best results and because the lengthy computational 
time dictated a limited parameter range in the final tests, only this value was used in 
the final tests using different values of c - c,, . 
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A few comments need to be made concerning specific methods. Method 4 gives 
results only at a set of specified t values (ti , i = l,..., N), distributed approximately 
uniformly in In(t). These results were used directly to form a measure L, = (CE, 
( f Oi> - J&i>)“/~) 1/Z which because of the distribution of t values we liken to our 7 
measures L,; no attempt was made to interpolate to achieve results at the normal 
specified t values. Concerning method 10, Piessens and Branders (1971) allow the sum 
in (3.24) to be terminated at a value of k less than N, thereby obtaining more accurate 
results. However, since these authors give no rule to indicate when this sum should 
be terminated and because we feel that no more than two free parameters can be 
usefully handled in applying a method in practice, we have not incorporated this 
flexibility in our parameter testing. For method 13, Silverberg (1970) and Durbin 
(1974)l note that results are accurate in the t range (0,2T). However, using t = 7.5 
gave poor results on most functions and we therefore settled on T = 15. Finally, 
several of the methods (8, 9, 12, 13, 14) specified a different way of determining the 
position of the real part c of the contour in the complex plane, for example by speci- 
fying a fixed value of c rather than of c - co . We have in all cases tested a range of 
values of c - c,, , both for consistency and because in any case the value c, could 
have been shifted originally by choosing a suitably altered test function. 

It can be argued that Laplace transform inversion is still more an art than a science. 
At least one example of the subtleties faced in our testing is in order. By running 
a single precision version of our program for method 13 we were able to reproduce 
the results of Durbin (1974) for the function F(p) = p-le+OP, which also show in this 
situation that method 13 is more accurate than method 12. However, for our test 
function F,,(p) = p-1e-5p we find that method 12 is more accurate than 13. The 
difference in results seems to depend on the value of the parameter T that is used: 
the success of method 13 on this problem requires apparently that T be less than twice 
the distance from the origin to the discontinuity. 

4.3. Results 

Results are presented in Tables IV and V. In Table IV are listed the “optimum” 
parameter values for L, for each function, and the values of L, and L at these para- 
meter values (sometimes the minimum L is at a different set of parameter values 
than L, , but we have ignored this difference to save space). In Table V are listed the 
“optimum” parameter values for the set of 16 test functions, and the values of L, and 
L at these values. 

The average computation time (CAU time on the Univac 1110) for obtaining f(t) 
at the 30 t values, averaged over the range of parameter values tested and over the 
16 test functions, is listed in Table VI, along with some specific requirements of some 
of the methods in terms of programming implementation. 

1 F. Durbin has brought to our attention his use of acceleration factors which speed the converg- 
ence of his method. However, we have chosen not to incorporate these and other unpublished re 
finements to the various methods; instead we prefer to implement each method more or less in the 
manner that might be followed by a careful user following the existing literature. 
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TABLE IV-Continued 

Method 
Parameter 

values L 
Parameter 

L values L L 

9 N = 20, 4.0(-18) 7.2(-18) N = 100, 3.1(-17) 1.7(-H) 
c - co = lo/l5 c - c, = 10/15 

10 N = 40, 4.3(-18) 1.8(-18) N = 120, 2.5(-17) 95-17) 
c - co = l/4 c - c, = l/2 

11 N = 60, 2.q-12) 4.7(-10) N = 110, 1.5(-8) 4.8(-6) 
b = 0.125 b = 0.125 

12 N = 4800, 4.0( -8) 2.8(-8) N = 4800, 1.5(-7) 4.6(-6) 
c -- c,, = 12130 c - co = 8/30 

13 N = 4800, 1.9(-4) 5.7(-5) N = 2200, 2.4( -6) 1.8(-6) 
c - cg = 4115 c - co = 6/15 

14 N = 301, 1.3(-10) 3.8(-11) N = 301, 8.4(-12) 1.4(-11) 
c-cc,=1 c - cg = 1.5 

UP) = P-’ F,(P) = P-a 
h.(t) = 1 &T(t) = t 

Parameter Parameter 
Method values J-6 L values L. L 

10 

11 

12 

13 

14 

N=8 

N = 10, r = 0.2 

N=4 

N = 15, r = 0.3 

N=5 

N=2 

c - c,, = 0.6 

N = 20, 
c - co = S/l5 

N = 20, 
c - co = 114 

N = 10, 
b = 0.075 

N = 4800, 
c - co = 12/30 

N = 4800, 
c - cg = 4115 

N = 281, 
c-co= 1.5 

2.9(-19) l.l(--18) 

2.3(-15) 3.3(--15) 

2.1(-13) 2.1(-13) 

1.2(-15) 

1.5(-2) 1.5(-2) 

l.O(-18) 1.7(--18) 

1.8(-16) 1.8(-16) 

4.1(-7) 4.2(-6) 

1.4(-17) 1.3(--15) 

7.3(-18) 2.6(-17) 

2.5(-17) 2.3(-16) 

1.2(-7) 8.2(-6) 

2.5(-4) 1.4(-4) 

3.9(-10) 5.6(-9) 

N= 18 

N = 25, r = 0.1 

N= 15 

N = 20, r = 0.4 

N=5 

N=2 

c - c,, = 0.8 

N = 20, 
c - c,, = S/l5 

N = 20, 
c - cg = l/4 

N = 10, 
b = 0.075 

N = 4800, 
c - co = 12/30 

N=800, 
c - co = 6/15 

N = 301, 
c-c, = 1.5 

1.6(+0) 8.9(+0) 
3.2( -9) 1.4(-8) 

5.4(-2) 3.2(-l) 

8.8(-2) 

8.2(-2) 1.5(fO) 

0 0 

9.9(-17) 5.4(-16) 

5.4(-7) 4.5( -6) 

2.6(-17) 2.9(-15) 

2.2(-17) 1.8(--16) 

3.q-17) 3.7(-16) 

3.q-7) 5.3(-5) 

1.9(-4) 2.5(-4) 

2.1(-11) 2.5(-10) 
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TABLE IV-Continued 

F,(P) = (P -I- 11-a F,(P) = (PZ + l>-’ 
h(f) = tecf f&) = sin(t) 

Parameter Parameter 
Method values 4 L values L L 

9.0(-2) 
4.1(-7) 

4.2(-9) 

2.2( -4) 

3.3(-5) 

1.5(-4) 

1.4(-8) 

8.7(-8) 

1.9(-18) 

4.7(-2) 

2.0(-6) 

2.8(-9) 

4.5(-l) 

3.7(-3) 

l.O(-2) 

6.3(-2) 

8.6(-3) 

8.9(-2) 

1.7(-6) 

2.q-7) 

1.5(--16) 

6.9(-l) 

2.4(-l) 

1.4(-l) 

N = 22 

N = 15, r = 0.1 
N= 15 

N = 20, r = 0.4 
N = 20 

N=6 

c - c,, = 0.8 

N = 20, 
c - co = 10115 

N = 20, 
c-c,=1 

N = 120, 
b = 0.075 

N = 4800, 
c - co = 12/30 

N=800, 
c-co = 6/15 

N = 301, 
c - co = 1.5 

N = 26 

N = 20, r = 0.1 

N=7 

N = 20, r = 0.1 
N = 25 

N=6 

c - co = 0.6 

N = 100, 
c - cg = lo/l5 

N = 120, 
c-c, = l/2 

N = 120, 
b = 0.125 

N = 4800, 
c - c,, = 12,/30 

N = 2200, 
c - co = 6115 

N = 301, 
c-ec,=l 

l.O(-4) 

5.4(-4) 

6.1(-7) 

3.8(-8) 

9.4(-19) 

1.3(-l) 

6.1(-l) 

6.3(-4) 

3.0(-7) 

2.8(--14) 

10 3.9(-18) 1.9(-18) 5.5(-17) 9.4(- 16) 

8.5(-H) 2.4(-8) 11 3.5(-8) 9.7(-6) 

12 5.6(-8) 2.1(-8) 3.1(-7) 1.6(-5) 

7.5(-5) 2.5(-5) 13 3.3(-6) 1.q-5) 

14 1.4(-12) 4.5(--13) 2.5(-11) 2.6(-11) 

F,(p) = p-lie F,,(p) = p-‘C5” 
fs(t) = (d-1/2 fro(t) = $0 - 5) 

Parameter Parameter 
Method values L L values L L 

10 

11 

7.1(-2) 

4.8(-9) 

3.4(-2) 

5.3(-l) 

2.5(-l) 

l.l(+o) 

1.7(-16) 

1.8(-7) 

4.2(-4) 

3.3(-2) 

2.5(-9) 

9.1(-2) 

2.1(--l) 

1.2(-2) 

1.3(-2) 

3.0(-2) 

1.3(-2) 

4.1(-2) 

3.6(-2) 

1.2(-l) 

8.3(-3) 

2.6(-l) 

9.1(-2) 

3.8(-2) 

3.9(-2) 

1.3(-l) 

6.7(-l) 

8.4(-l) 

7.5(-2) 

2.1(-t-O) 

1.2(+-O) 

N= 16 

N = 25, r = 0.2 

N=4 

N = 15, r = 0.2 

N= 10 

N=2 

c - co = 0.4 

N = 280, 
c - co = S/l5 

N = 20, 
c - co = l/4 

N= 10, 
b = 0.075 

N = 32 

N = 20, r = 0.2 

N=4 

N = 20, r = 0.2 
N = 25 

N=2 

c - co = 0.8 

N=300, 
c - co = S/l5 

N = 240, 
c-c, = l/2 

N = 60, 
b = 0.075 

2.5(-l) 

1.2(+0) 

8.0(-17) 

2.6(-7) 

l.l(-2) 

1.q-17) 2.5(-17) 7.q-2) 

2.7(-17) 1.4(-16) 3.1(-2) 
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TABLE IV-Continued 

23 

Parameter Parameter 
Method values L L values L L 

12 N = 4800, 1.3(-3) 4.5(-3) N=5000, 8.2(-S) 5.3(-4) 
c - co = 4130 c - co = 8130 

13 N = 4800, 8.4(-3) 4,q-3) N=600, 6.9(-2) 2.2(-l) 
c - cg = 2115 c-cc,=2115 

14 N = 301, l.O(--IO) 9.8(-11) N = 81, 6.5(-2) 2.1($0) 
c-cc,=1 c - co = 0.5 

F,,(P) = P-l WJ) Fdp) = Ml + e-9-’ 
Mt) = -Y - In(t) fi2(t) = square wave 

Parameter Parameter 
Method values L L values L L 

IO 

11 

12 

13 

14 

N= 16 

N = 20, r = 0.3 

N= 15 

N = 15, r = 0.2 
N = 20 

N=8 

c - co = 0.8 

N = 280, 
c - c, = 8/15 

N=300, 
c - c, = l/2 

N= 10, 
b = 0.075 
N = 4800, 
c - c, = 8130 

N=4600, 
c - co = 4115 

N = 281, 
c-cc,=1 

4.2(-l) 

1.8(--8) 

1.4(-2) 

8.9( -2) 

9.2(-2) 

1.7(-l) 

4.4( -2) 

8.9(-7) 

2.5(-5) 

4.2(-l) 

1.9(-Q 

5.0(-2) 

9.2( -2) 

1.4(-l) 

3.7(-2) 

7.0(-5) 

5.8(-4) 

1.5(-3) 9.9(-3) 

6.3(-l) 1.6(+0) 

1.5(-4) 

1.6(-3) 

l&-3) 

3.7(-3) 

2.1(-10) 1.7(-10) 

N = 28 

N = 25, r = 0.3 

N= 15 

N = 20, r = 0.4 

N = 20 

N=8 

c - co = 0.6 

N = 280, 
c - co = lo/l5 

N = 200, 
c - c, = l/2 

N = 20, 
b = 0.125 

N=5000, 
c - co = 8130 

N = 4800, 
c - cg = 4115 

N = 281, 
c - co = 0.5 

3.2(-l) 

6.1(-2) 

4.4(-2) 

2.2(-l) 

5.8(-2) 

2.1(-l) 

6.0( -2) 

3.q-3) 

2.3(-2) 

4.2(-2) 

2.7(-l) 

9.6( -4) 

6.7(-4) 

5.7(-4) 

3.5(--l) 

2.9(-l) 

3.0(-l) 

3.3(-l) 

3.6(-l) 

2.9(-l) 

2.1(-2) 

8.8(-l) 

3.6(-l) 

1.5(+0) 

1.7(-3) 

5.9( -4) 

1.4(-2) 

MP) = w - l)W + l)Y &4(P) = (P + l/WZ - (P + 1/4)“2 
fit&) = f COS(f) f14(t) = (eetj4 - e-*la)(47rta)-11a 

Parameter Parameter 
Method values L L values L. L 

1 l.l(+o) 6.q+o) l.l(-2) 3.7(-3) 
2 N = 28 3.9(-2) 2.8(+0) N= 16 1.6(--8) 6.4(--8) 
3 N = 25, r = 0.2 7.1(-2) 3.9(+0) N = 15, r = 0.2 7.4(-3) 4.9(-3) 
4 N= 15 1.2(-l) N=4 6.6( -2) 

5 N = 25, r = 0.4 1.5(--l) 6.3(+0) N = 15, r = 0.2 3.2(-2) 3.2(-2) 
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TABLE IV-Continued 

Method 
Parameter 

values L 
Parameter 

L values -5 L 

N= 10 
N=6 

c - co = 0.8 

N = 220, 
c - co = lo/l5 

N = 120, 
c - co = l/2 

N= 100, 
b = 0.2 
N = 4800, 
c - co = 12130 

N=800, 
c - co = 6/15 

N = 301 
c - co = 1.5 

4.8(-l) 6.1(+0) 

5.4(-5) 2.q-2) 

3.7(-7) 3.9(-6) 

2.2(-16) 4.5(-14) 

N= 15 

N=4 

c - cg = 0.4 

N = 280, 
c - co = S/l5 

N = 40, 
c - cg = l/4 

N = 40, 
b = 0.2 
N = 4800, 
c - cg = 4130 

N=4600, 
c - co = 2115 

N = 301, 
c-cc,=1 

2.0(+0) 1.6(+0) 
6.9(-11) 1.7(-S) 

2.4(-8) 8.4(-9) 

3.6(-5) 5.1(-5) 

10 2.2(-17) 2.4(-15) 1.4(-18) 6.3(-19) 

5.1(-7) 1.8(-4) 2.6(-13) 3.3(-11) 11 

12 3.5(-7) 3.6(-5) l.l(-4) 6.7(-5) 

2.8(-4) 13 1.4(-4) 2.q-4) 7.5(-4) 

14 1.q-11) 3.1(-10) 2.1(-11) 6.1(-12) 

F,,(p) = ec4p1” F,,(p) = arctan 
&(f) = 2e-qrty/* fJt) = t-l sin(t) 

Parameter Parameter 
Method values L L values L L 

1.6(-2) 

3.6(-7) 

4.3( -5) 

4.q-4) 
13-5) 

2.8(-4) 

2.3(-6) 

8.1(-g) 

6.7(-18) 

l.l(--2) 

1.8(-6) 

5.4(-5) 

2.5(-l) 1.5(-l) 

4.1(-4) 1.9(-2) 

6.2(-4) 8.3(-3) 

9.8(-3) 
1.3(-2) 5.2(-2) 

1.2(-2) 7.2(-2) 

3.7(-3) 3.4(-3) 

7.6(-5) 2.7(-2) 

1.4(-11) 39-9) 

l.l(-13) 3.3(-11) 

l.l(-8) 3.5(-6) 

2.1(-3) 7.0(-l) 

5.4(-2) 8.9(+0) 

l.l(-10) 4.4(-9) 

N = 24 

N=20,r=O.l 

N= 15 
N = 20, r = 0.1 

N = 25 

N=8 

c - c,, = 0.8 

N=300, 
c - co = 8115 

N=300, 
c-cc,=1 

N = 20, 
b = 0.125 

N=lOOO, 
c - co = 12/30 

N=400, 
c - co = 6/15 

N = 261, 
c - co = 1.5 

N = 24 

N = 20, r = 0.1 

N=4 
N= 15,r=0.3 

N = 25 

N=8 

c - c-0 = 0.2 

N=lOO, 
c - co = S/l5 

N = 220, 
c - co = l/4 

N = 80, 
b = 0.2 
N=5000, 
c - cg = 4130 

N = 4800, 
c-cc,=2115 

N = 281, 
c - c-0 = 0.5 

4.9(-5) 

4.6(-4) 

9.6(-5) 

2.7(-7) 

1.q-15) 

3.3(-8) 1.q-5) 10 

11 4.1(-3) 3.4(-2) 

12 1.8(-11) 5.1(-9) 

13 3.5(-8) 2.8(-8) 

14 1.q-13) 1.8(-11) 
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TABLE V 

For the Set of 16 Test Functions as a Whole, “Optimum” Parameter Values for Each of 14 Numerical 
Methods, and the Values of L. andL for Each Test Function at These Parameter Values 

(3.0(-l) = 3.0 x 10-l) 

Method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

F,(p) = (p” + 1)--l/B F.(p) = p--l&.--~-~ 

m> = Jo@> Ye(t) = (2Tt)-“* cos(2t’l”) 
Parameter 

values L L L L 

3.0(-l) 2.3(--l) 1.5(-l) 1.4(-l) 

N= 18 4.3(-3) 9.q-2) 1.9(-7) 1.q-5) 

N = 15,r = 0.1 2.8(-2) 5.8(-2) 6.4(-2) 3.8(-2) 

N= 15 diverges 9.5(-l) 

N = 20, r = 0.1 3.2(-2) 3.6(-2) 5.5(-l) 2.8(-l) 

N = 25 2.q-2) 1.8(-l) 2.8(+2) 2.4(+2) 
N=6 l.l(-6) 3.7(-4) 8.0(-7) 3.1(-7) 

c - co = 0.6 3.2(-7) 4.2( -6) 1.3(-7) 2.1(-6) 

N=200, 3.4(- 16) 3.3(-14) 3.3(-3) 2.q-2) 
c - co = S/l5 

N = 140, 3.q-16) 1.q-15) 1.7(-17) 8.7(-16) 
c-c,= l/2 

N = 60,b = 0.125 1.q-4) 1.7(-2) 5.q-13) 9.3(-11) 

N = 4800, 1.2(-7) 6.9(-6) 2.5(-3) 1.4(--l) 
c - co = 12/30 

N=4600, 2.9(-4) 5.1(-4) 8.6(-3) 1.6(-2) 
c - cg = 4115 

N = 301, c - co = 1 2.q- 10) 5.7(-11) 2.1(-10) 9.4(-11) 

F,(P) = ((P + 0.2)’ + I)-’ 
fact) = eFzt sin(t) 

L L Method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

F,(P) = (P + 1/W’ 
fa(f) = e+% 

L L 

1.4(-l) 5.8(-2) 

8.3(-8) 18-6) 

1.2(-7) 1.4(-7) 

l.l(-3) 

3.4( -2) 1.7(-2) 

5.9(-5) 2.1(-4) 

3.8( -7) 3.1(-7) 

2.4(-7) 9.3(-8) 

7.1(-17) 8.7(-17) 

1.3(--17) 8.1(--18) 

2.q-12) 4.7(-10) 

4.0(-8) 2.8(-8) 

3.8(-4) 1.2(-4) 

1.3(-10) 3.8(-11) 

2.9( - 1) 

2.7(-3) 

7.9(-3) 

2.5(-2) 

8.5(-4) 

2.6(-2) 

2.0(-7) 

1.5(-7) 

2.6(--16) 

3.2(-17) 

7.4(-5) 

1.6(-7) 

1.7(-4) 

1.2(--11) 

2.1(-l) 

4.q-2) 

1.8(-2) 

6.1(-3) 

1.1(-l) 

7.3(-5) 

8.9(-8) 

4.8(-15) 

7.2(-17) 

1.5(-2) 

l.l(-6) 

8.6(-5) 

8.7(-12) 
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TABLE V-Continued 

Method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

F,(p) = p--l 
Jw) = 1 

-L 

2.9(-19) 

4.1(-9) 

3.9(-9) 

2.8(-9) 

3.4(-2) 

2.5(-18) 

4.0(-7) 

4.1(-7) 

3.8(-16) 

3.6(-17) 

1.4(-11) 

1.2(-7) 

5.5(-4) 

5.4(-10) 

L 

1.1(-l@ 

7.2(-9) 

2.8(-9) 

1.7(-2) 

2.8(-18) 

4.0(-7) 

4.2(-6) 

2.7(-14) 

1.3(-15) 

3.0(-9) 

8.2(-6) 

6.2(-4) 

1.6(-10) 

F,(P) = p-2 
I%) = f 

L L 

1.6(+0) 8.9(+0) 
3.2(-9) 1.4(-8) 

5.0(-l) 6.4(-l) 

8.8(-2) 

1.4(-l) 4.1(-l) 

0 0 

1.9(-8) l.l(-7) 

8.3(-7) 3X(-6) 

2.3(-M) 3.5(-12) 

1.3(-16) 2.1(-15) 

l.l(-11) 2.7(-9) 

3.0(-7) 5.3(--5) 

1.q-2) 1.3(-2) 

2.1(-9) 1.3(-9) 

Method 

F,(P) = (P + w2 F*(P) = (P” + 11-l 
h(t) = re-t &(t) = sin(t) 

L L L L 

1 9.0(-2) 

2 2.2(-6) 

3 4.2(-9) 

4 2.2(-4) 

5 2.0(-4) 

6 i.5(-4) 

7 1.4(-8) 

8 3.9(-7) 

9 4.4(-15) 

10 2.5(-17) 

11 l.l(-6) 

12 5.6(-8) 

13 4.4(-3) 

14 4.0(-10) 

4.7(-2) 

1.6(-5) 

2.8(-9) 

l.l(-4) 

5.4(-4) 

6.1(-7) 

1.2(-7) 

1.4(-15) 

1.q-17) 

2.7(-4) 

2.1(-8) 

1.4(-3) 

1.3(-10) 

4.5(- 1) 

1.7(-2) 

5.7(-2) 

9.1(-2) 

8.6(-3) 

8.9(-2) 

1.7(-6) 

2.q-7) 

6.4(-16) 

5.5(-17) 

3.3(-4) 

3.1(-7) 

2.2(-4) 

2.5(-11) 

6.9(-l) 

4.2(-l) 

2.7(-l) 

1.3(-l) 

6.1(-l) 

6.3(-4) 

3.0(-7) 

8.3(-14) 

7.7(-16) 

5.4(-2) 

1.6(-5) 

2.3(-4) 

2.6(-11) 
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TABLE V-Continued 

Method 

F,(p) = p-‘/a 
f&) = (d)-‘le 

L L 

F,,(p) = p-k5” 
ho(t) = w - 5) 

LO L 

1 7.1(-2) 

2 4.0(-8) 

3 6.2( -2) 

4 9.4(-l) 

5 5.5(-l) 

6 2.8(+2) 
7 8.6( -7) 

8 2.8(-7) 

9 3.3(-3) 

10 4.8(-17) 

11 1.4(-11) 

12 2.5(-3) 

13 8.6(-3) 

14 1.q-10) 

3.3(-2) 

1.5(-8) 

3.6(-2) 

2.8(-l) 

2.4(+2) 

4.0(-7) 

3.8(-6) 

2.q-2) 

2.q-15) 

2.5(-9) 

1.3(-l) 

1.6(-2) 

9.8(-11) 

2.1(-l) 

2.7(-2) 

4.5(-2) 

12-l) 

1.8(-2) 

4.1(-2) 

6.7(-l) 

1.2(-l) 

1.4(-2) 

7.2( -2) 

4.4(-2) 

1.6(-4) 

8.1(-2) 

1.2(-l) 

2.6(-l) 

6.3(-2) 

5.0(-2) 

3.2(-2) 

1.3(-l) 

2.3(+1) 
8.4(-l) 

6.6(-2) 

24-tO) 

5.1(+0) 

9.2( -4) 

3.4(-l) 

3.9($1) 

F,,(P) = P-’ MP) Fdp) = (~(1 + e-W-’ 
fidt) = -Y - In(t) fie(t) = square wave 

Method L L L L 

1 4.2(-l) 4.2(-l) 3.2(-l) 3.5(-l) 

2 2.7(-8) l.l(-8) 1.1(-l) 3.1(-l) 

3 1.6(-2) 1.8(-2) 1.6(-l) 3.1(-l) 

4 8.9( -2) 2.2(-l) 

5 2.2(-l) 1.1(-l) 8.1(-2) 2.9(-l) 

6 
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TABLE V-Continued 

&3(P) = w - I)($ + l)Y F,,(P) = (P + li2)“2 - (p + 1,:4)‘12 

Method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Method 

- 

L(f) = tcos(t> 
L 

__~ 

l.l(+o) 

1.8(-l) 

1.4(-tO) 

1.2(-l) 

53-I) 

4.8(-l) 

5.4(-5) 

9.0(-7) 

9.0(-14) 

2.6(-17) 

6.6(-3) 

3.5(-7) 

8.1(-3) 

7.9(- 10) 

L 

6.0( +O) 
4.9(+0) 

J.W+Q 

2.6(+0) 
6.1(+‘3) 
2.0(-2) 

2.6(-6) 

1.4(-11) 

7.0(- 16) 

1.8(+0) 
3.6(-5) 

9.2(-3) 

8.6(- 10) 

&(p) = e&” 
&(t) = 2e-4/t(7rt3)-1/z 

L L 

fi4(t) = (evt14 - e-“a)(4af3)--1i2 

L 

l.l(-2) 

1.7(-7) 

7.8(-3) 

12-l) 

6.9(-2) 

3.3(fl) 

l.l(-7) 

2.8(-B) 

3.6(-4) 

3.7(- 18) 

8.4( - 13) 

1.6(-4) 

8.4(-4) 

2.1(-11) 

L 

3.7(-3) 

5.8(-8) 

4.6(-3) 

3.5(-2) 

2.7(3-l) 

4.8(-8) 

1.7(-8) 

1.3(-4) 

1.2(-17) 

1.3(- 10) 

6.1(-4) 

3.5(-4) 

6.1(-12) 

4,(P) = arcwp-‘1 
f&t) = t-l sin(t) 

L L 

1 1.6(-2) 

2 4.0(-6) 

3 8.7(--5) 

4 4.0(-4) 

5 1.3(-5) 

6 2.8(-4) 

7 1.3(-5) 

8 8.4( -9) 

9 2.2(-15) 

10 1.9(-6) 

11 4.4(-2) 

12 1.8(-11) 

13 1.9(-6) 

14 6.7(-13) 

l.l(-2) 

2.3(-6) 

9.0(-5) 

4.9(-5) 

4.6(-4) 

2.4(-4) 

4.3(-S) 

l.l(-14) 

3.2(-5) 

6.8(+0) 

5.1(-9) 

1.5(-6) 

2.8(-13) 

2.5(-l) 

1.7(-3) 

5.6(-3) 

1.4(-2) 

3.4(-2) 

1.2(-2) 

2.2($1) 

2.6(-2) 

l.O(-10) 

3.3(- 12) 

3.7(-5) 

1.4(-l) 

2.1(+0) 

5.6(-S) 

1.5(-l) 

3.5(-2) 

1.9(-2) 

2.1(-2) 

7.2(-2) 

7.1(+3) 

9.7(fO) 

4.0(-8) 

1.2(-9) 

5.4(-3) 

5.1(+1) 

6.0(+2) 
2.3(-5) 
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TABLE VI 

Approximate Execution Times and Implementation Requirements for the Methods Tested 

Method 

Approximate 
execution 

time Implementation requirements Programming advantages 

1 0.0079 
2 0.043 
3 0.031 
4 0.043 
5 0.081 
6 0.14 
7 0.059 

8 20. 
9 2.4 

10 2.6 

11 8.9 

12 50. 

13 61. 

14 27. 

Knowledge of P’(p) 

F(p) in complex plane; 
knowledge of OL such that 
lim,,, F@> -P-~ 

F(p) in complex plane 
F(p) in complex plane 
F(p) in complex plane; 

knowledge of OL such that 
lim,,, F(P) N P-” 

Knowledge of 01 such that 
lim,,, F(P) -P-~ 

F(p) in complex plane 

F@) in complex plane 

F(p) in complex plane 

Easy to program 

Easy to program; more terms 
give more accuracy 

Easy to program; more terms 
give more accuracy 

More terms give more 
accuracy 

Computation time in many applications depends primarily on the number of 
evaluations of F( p) required, and in this context it should be noted that methodsl, 2, 
7, and 8 require a fixed number of function evaluations for each value of t required, 
whereas the other methods provide for a range of t values for each set of function 
evaluations. Hence the computation times for methods 1, 2, 7, and 8 would be con- 
siderably reduced or incrased for respectively fewer or greater than the 30 t values 
used in calculating the entries in Table VI. 

The execution times for methods 9 to 13 can be reduced by use of the fast Fourier 
transform, especially if the number of terms in the series whose sum approximates 
f(t) is large. In addition, use of the FFT reduces the roundoff error involved, though 
we do not estimate this improvement to make any noticeable change to the values 
we present for L and L, . The results given by Durbin (1974) with and without use of 
the FFT support this conclusion. 

Tables IV-VI thus provide a basis for comparing the 14 methods tested. 
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5. CONCLUSION 

In Section 4 are presented results of tests of a number of different numerical methods 
for inverting the Laplace transform. These results may be evaluated according to the 
criteria given in Section 2: applicability to actual inversion problems, applicability 
to various types of functions, numerical accuracy, computational efficiency, and ease 
of programming and implementation. Unfortunately there is no simple and clear-cut 
conclusion to be drawn from these results: no one method is definitely superior by 
all criteria. The following conclusions which we draw should be seen in the light of 
this limitation. 

First, if at all possible, more than one numerical inversion method should be used 
on any unknown function. This is because every method breaks down on some func- 
tions, and therefore verification by different methods can greatly increase confidence 
in any results achieved. 

Second, if a general-purpose method is desired for which high accuracy on many 
different types of functions is desired, then: 

(a) the use of Laguere polynomials (methods 9 and 10) gives exceptional 
accuracy on a wide range of functions; 

(b) the use of Chebyshev polynomials (method 11) or the Fourier series 
approach with accelerated convergence through the epsilon algorithm (method 14) 
give excellent accuracy on a wide range of functions; 

(c) the following methods give good accuracy on a fairly wide range of func- 
tions: Gaver-Stehfest (method 2) Gaussian quadrature (methods 7 and 8), and the 
Fourier series approach without accelerated convergence (methods 12 and 13); 

(d) the following methods seldom give high accuracy: Widder (method 1) 
and expanding f(t) in exponential functions (methods 3-6). 

Third, if a method is required for a function whose functional behavior is well 
known and understood, comments (a)-(d) plus the results in Table IV should give 
a good idea of which methods are most appropriate. 

Fourth, the following comments apply to special situations: 

(a) if F(p) is in the form of a rational fraction, the method of Pad6 approxi- 
mation of P(p) gives highly accurate results; 

(b) if Ii(p) is known only on the real axis, or if determination of I;(p) for com- 
plex p is very diffiicult, Chebyshev polynomials (method 11) give excellent accuracy 
on a wide range of functions and Gaver-Stehfest (method 2) gives good accuracy 
on a fairly wide range of functions, each through use of values of F( p) on the real 
axis only; 

(c) for functions with discontinuities, the use of a Fourier series approach 
(methods 12-14) gives the greatest promise of accuracy. 

Fifth, in particular circumstances a special weighting of different criteria (such 
as computation time or ease of programming) may dictate the choice of method or 
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methods. The results in Tables II-VI should be useful in choosing between the 
methods tested here, or in evaluating other methods which may seem appropriate 
to the task at hand. 
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